Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Limits
abscn2
Next ⟩
cjcn2
Metamath Proof Explorer
Ascii
Unicode
Theorem
abscn2
Description:
The absolute value function is continuous.
(Contributed by
Mario Carneiro
, 9-Feb-2014)
Ref
Expression
Assertion
abscn2
⊢
A
∈
ℂ
∧
x
∈
ℝ
+
→
∃
y
∈
ℝ
+
∀
z
∈
ℂ
z
−
A
<
y
→
z
−
A
<
x
Proof
Step
Hyp
Ref
Expression
1
absf
⊢
abs
:
ℂ
⟶
ℝ
2
ax-resscn
⊢
ℝ
⊆
ℂ
3
fss
⊢
abs
:
ℂ
⟶
ℝ
∧
ℝ
⊆
ℂ
→
abs
:
ℂ
⟶
ℂ
4
1
2
3
mp2an
⊢
abs
:
ℂ
⟶
ℂ
5
abs2difabs
⊢
z
∈
ℂ
∧
A
∈
ℂ
→
z
−
A
≤
z
−
A
6
4
5
cn1lem
⊢
A
∈
ℂ
∧
x
∈
ℝ
+
→
∃
y
∈
ℝ
+
∀
z
∈
ℂ
z
−
A
<
y
→
z
−
A
<
x