Metamath Proof Explorer


Theorem abscncf

Description: Absolute value is continuous. (Contributed by Paul Chapman, 21-Oct-2007) (Revised by Mario Carneiro, 28-Apr-2014)

Ref Expression
Assertion abscncf abs : cn

Proof

Step Hyp Ref Expression
1 absf abs :
2 abscn2 x y + z + w w x < z w x < y
3 2 rgen2 x y + z + w w x < z w x < y
4 ssid
5 ax-resscn
6 elcncf2 abs : cn abs : x y + z + w w x < z w x < y
7 4 5 6 mp2an abs : cn abs : x y + z + w w x < z w x < y
8 1 3 7 mpbir2an abs : cn