| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0red |
|
| 2 |
|
0le0 |
|
| 3 |
2
|
a1i |
|
| 4 |
|
simplr |
|
| 5 |
|
recxpcl |
|
| 6 |
1 3 4 5
|
syl3anc |
|
| 7 |
|
cxpge0 |
|
| 8 |
1 3 4 7
|
syl3anc |
|
| 9 |
6 8
|
absidd |
|
| 10 |
|
simpr |
|
| 11 |
10
|
oveq1d |
|
| 12 |
11
|
fveq2d |
|
| 13 |
10
|
abs00bd |
|
| 14 |
13
|
oveq1d |
|
| 15 |
9 12 14
|
3eqtr4d |
|
| 16 |
|
simplr |
|
| 17 |
16
|
recnd |
|
| 18 |
|
logcl |
|
| 19 |
18
|
adantlr |
|
| 20 |
17 19
|
mulcld |
|
| 21 |
|
absef |
|
| 22 |
20 21
|
syl |
|
| 23 |
16 19
|
remul2d |
|
| 24 |
|
relog |
|
| 25 |
24
|
adantlr |
|
| 26 |
25
|
oveq2d |
|
| 27 |
23 26
|
eqtrd |
|
| 28 |
27
|
fveq2d |
|
| 29 |
22 28
|
eqtrd |
|
| 30 |
|
simpll |
|
| 31 |
|
simpr |
|
| 32 |
|
cxpef |
|
| 33 |
30 31 17 32
|
syl3anc |
|
| 34 |
33
|
fveq2d |
|
| 35 |
30
|
abscld |
|
| 36 |
35
|
recnd |
|
| 37 |
|
abs00 |
|
| 38 |
37
|
adantr |
|
| 39 |
38
|
necon3bid |
|
| 40 |
39
|
biimpar |
|
| 41 |
|
cxpef |
|
| 42 |
36 40 17 41
|
syl3anc |
|
| 43 |
29 34 42
|
3eqtr4d |
|
| 44 |
15 43
|
pm2.61dane |
|