Step |
Hyp |
Ref |
Expression |
1 |
|
0red |
|
2 |
|
0le0 |
|
3 |
2
|
a1i |
|
4 |
|
simplr |
|
5 |
|
recxpcl |
|
6 |
1 3 4 5
|
syl3anc |
|
7 |
|
cxpge0 |
|
8 |
1 3 4 7
|
syl3anc |
|
9 |
6 8
|
absidd |
|
10 |
|
simpr |
|
11 |
10
|
oveq1d |
|
12 |
11
|
fveq2d |
|
13 |
10
|
abs00bd |
|
14 |
13
|
oveq1d |
|
15 |
9 12 14
|
3eqtr4d |
|
16 |
|
simplr |
|
17 |
16
|
recnd |
|
18 |
|
logcl |
|
19 |
18
|
adantlr |
|
20 |
17 19
|
mulcld |
|
21 |
|
absef |
|
22 |
20 21
|
syl |
|
23 |
16 19
|
remul2d |
|
24 |
|
relog |
|
25 |
24
|
adantlr |
|
26 |
25
|
oveq2d |
|
27 |
23 26
|
eqtrd |
|
28 |
27
|
fveq2d |
|
29 |
22 28
|
eqtrd |
|
30 |
|
simpll |
|
31 |
|
simpr |
|
32 |
|
cxpef |
|
33 |
30 31 17 32
|
syl3anc |
|
34 |
33
|
fveq2d |
|
35 |
30
|
abscld |
|
36 |
35
|
recnd |
|
37 |
|
abs00 |
|
38 |
37
|
adantr |
|
39 |
38
|
necon3bid |
|
40 |
39
|
biimpar |
|
41 |
|
cxpef |
|
42 |
36 40 17 41
|
syl3anc |
|
43 |
29 34 42
|
3eqtr4d |
|
44 |
15 43
|
pm2.61dane |
|