Metamath Proof Explorer


Theorem abscxp2

Description: Absolute value of a power, when the exponent is real. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion abscxp2 A B A B = A B

Proof

Step Hyp Ref Expression
1 0red A B A = 0 0
2 0le0 0 0
3 2 a1i A B A = 0 0 0
4 simplr A B A = 0 B
5 recxpcl 0 0 0 B 0 B
6 1 3 4 5 syl3anc A B A = 0 0 B
7 cxpge0 0 0 0 B 0 0 B
8 1 3 4 7 syl3anc A B A = 0 0 0 B
9 6 8 absidd A B A = 0 0 B = 0 B
10 simpr A B A = 0 A = 0
11 10 oveq1d A B A = 0 A B = 0 B
12 11 fveq2d A B A = 0 A B = 0 B
13 10 abs00bd A B A = 0 A = 0
14 13 oveq1d A B A = 0 A B = 0 B
15 9 12 14 3eqtr4d A B A = 0 A B = A B
16 simplr A B A 0 B
17 16 recnd A B A 0 B
18 logcl A A 0 log A
19 18 adantlr A B A 0 log A
20 17 19 mulcld A B A 0 B log A
21 absef B log A e B log A = e B log A
22 20 21 syl A B A 0 e B log A = e B log A
23 16 19 remul2d A B A 0 B log A = B log A
24 relog A A 0 log A = log A
25 24 adantlr A B A 0 log A = log A
26 25 oveq2d A B A 0 B log A = B log A
27 23 26 eqtrd A B A 0 B log A = B log A
28 27 fveq2d A B A 0 e B log A = e B log A
29 22 28 eqtrd A B A 0 e B log A = e B log A
30 simpll A B A 0 A
31 simpr A B A 0 A 0
32 cxpef A A 0 B A B = e B log A
33 30 31 17 32 syl3anc A B A 0 A B = e B log A
34 33 fveq2d A B A 0 A B = e B log A
35 30 abscld A B A 0 A
36 35 recnd A B A 0 A
37 abs00 A A = 0 A = 0
38 37 adantr A B A = 0 A = 0
39 38 necon3bid A B A 0 A 0
40 39 biimpar A B A 0 A 0
41 cxpef A A 0 B A B = e B log A
42 36 40 17 41 syl3anc A B A 0 A B = e B log A
43 29 34 42 3eqtr4d A B A 0 A B = A B
44 15 43 pm2.61dane A B A B = A B