Metamath Proof Explorer


Theorem absdifle

Description: The absolute value of a difference and 'less than or equal to' relation. (Contributed by Paul Chapman, 18-Sep-2007)

Ref Expression
Assertion absdifle A B C A B C B C A A B + C

Proof

Step Hyp Ref Expression
1 resubcl A B A B
2 absle A B C A B C C A B A B C
3 1 2 stoic3 A B C A B C C A B A B C
4 renegcl C C
5 leaddsub2 B C A B + C A C A B
6 4 5 syl3an2 B C A B + C A C A B
7 6 3comr A B C B + C A C A B
8 recn B B
9 recn C C
10 negsub B C B + C = B C
11 8 9 10 syl2an B C B + C = B C
12 11 3adant1 A B C B + C = B C
13 12 breq1d A B C B + C A B C A
14 7 13 bitr3d A B C C A B B C A
15 lesubadd2 A B C A B C A B + C
16 14 15 anbi12d A B C C A B A B C B C A A B + C
17 3 16 bitrd A B C A B C B C A A B + C