Metamath Proof Explorer


Theorem absdifltd

Description: The absolute value of a difference and 'less than' relation. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses absltd.1 φ A
absltd.2 φ B
absltd.3 φ C
Assertion absdifltd φ A B < C B C < A A < B + C

Proof

Step Hyp Ref Expression
1 absltd.1 φ A
2 absltd.2 φ B
3 absltd.3 φ C
4 absdiflt A B C A B < C B C < A A < B + C
5 1 2 3 4 syl3anc φ A B < C B C < A A < B + C