Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Square root; absolute value
absdiv
Next ⟩
absid
Metamath Proof Explorer
Ascii
Unicode
Theorem
absdiv
Description:
Absolute value distributes over division.
(Contributed by
NM
, 27-Apr-2005)
Ref
Expression
Assertion
absdiv
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
=
A
B
Proof
Step
Hyp
Ref
Expression
1
divcl
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
∈
ℂ
2
abscl
⊢
A
B
∈
ℂ
→
A
B
∈
ℝ
3
1
2
syl
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
∈
ℝ
4
3
recnd
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
∈
ℂ
5
absrpcl
⊢
B
∈
ℂ
∧
B
≠
0
→
B
∈
ℝ
+
6
5
3adant1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
B
∈
ℝ
+
7
6
rpcnd
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
B
∈
ℂ
8
6
rpne0d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
B
≠
0
9
4
7
8
divcan4d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
⁢
B
B
=
A
B
10
simp2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
B
∈
ℂ
11
absmul
⊢
A
B
∈
ℂ
∧
B
∈
ℂ
→
A
B
⁢
B
=
A
B
⁢
B
12
1
10
11
syl2anc
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
⁢
B
=
A
B
⁢
B
13
divcan1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
⁢
B
=
A
14
13
fveq2d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
⁢
B
=
A
15
12
14
eqtr3d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
⁢
B
=
A
16
15
oveq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
⁢
B
B
=
A
B
17
9
16
eqtr3d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
=
A
B