Metamath Proof Explorer


Theorem absdiv

Description: Absolute value distributes over division. (Contributed by NM, 27-Apr-2005)

Ref Expression
Assertion absdiv A B B 0 A B = A B

Proof

Step Hyp Ref Expression
1 divcl A B B 0 A B
2 abscl A B A B
3 1 2 syl A B B 0 A B
4 3 recnd A B B 0 A B
5 absrpcl B B 0 B +
6 5 3adant1 A B B 0 B +
7 6 rpcnd A B B 0 B
8 6 rpne0d A B B 0 B 0
9 4 7 8 divcan4d A B B 0 A B B B = A B
10 simp2 A B B 0 B
11 absmul A B B A B B = A B B
12 1 10 11 syl2anc A B B 0 A B B = A B B
13 divcan1 A B B 0 A B B = A
14 13 fveq2d A B B 0 A B B = A
15 12 14 eqtr3d A B B 0 A B B = A
16 15 oveq1d A B B 0 A B B B = A B
17 9 16 eqtr3d A B B 0 A B = A B