Metamath Proof Explorer


Theorem absdivd

Description: Absolute value distributes over division. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses abscld.1 φ A
abssubd.2 φ B
absdivd.2 φ B 0
Assertion absdivd φ A B = A B

Proof

Step Hyp Ref Expression
1 abscld.1 φ A
2 abssubd.2 φ B
3 absdivd.2 φ B 0
4 absdiv A B B 0 A B = A B
5 1 2 3 4 syl3anc φ A B = A B