Metamath Proof Explorer


Theorem absdvdsb

Description: An integer divides another iff its absolute value does. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion absdvdsb MNMNMN

Proof

Step Hyp Ref Expression
1 breq1 M=MMNMN
2 1 bicomd M=MMNMN
3 2 a1i MNM=MMNMN
4 negdvdsb MNMN- MN
5 breq1 M=MMN- MN
6 5 bicomd M=M- MNMN
7 4 6 sylan9bb MNM=MMNMN
8 7 ex MNM=MMNMN
9 zre MM
10 9 absord MM=MM=M
11 10 adantr MNM=MM=M
12 3 8 11 mpjaod MNMNMN