Metamath Proof Explorer


Theorem absdvdsb

Description: An integer divides another iff its absolute value does. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion absdvdsb M N M N M N

Proof

Step Hyp Ref Expression
1 breq1 M = M M N M N
2 1 bicomd M = M M N M N
3 2 a1i M N M = M M N M N
4 negdvdsb M N M N -M N
5 breq1 M = M M N -M N
6 5 bicomd M = M -M N M N
7 4 6 sylan9bb M N M = M M N M N
8 7 ex M N M = M M N M N
9 zre M M
10 9 absord M M = M M = M
11 10 adantr M N M = M M = M
12 3 8 11 mpjaod M N M N M N