Metamath Proof Explorer


Theorem absef

Description: The absolute value of the exponential is the exponential of the real part. (Contributed by Paul Chapman, 13-Sep-2007)

Ref Expression
Assertion absef A e A = e A

Proof

Step Hyp Ref Expression
1 replim A A = A + i A
2 1 fveq2d A e A = e A + i A
3 recl A A
4 3 recnd A A
5 ax-icn i
6 imcl A A
7 6 recnd A A
8 mulcl i A i A
9 5 7 8 sylancr A i A
10 efadd A i A e A + i A = e A e i A
11 4 9 10 syl2anc A e A + i A = e A e i A
12 2 11 eqtrd A e A = e A e i A
13 12 fveq2d A e A = e A e i A
14 3 reefcld A e A
15 14 recnd A e A
16 efcl i A e i A
17 9 16 syl A e i A
18 15 17 absmuld A e A e i A = e A e i A
19 absefi A e i A = 1
20 6 19 syl A e i A = 1
21 20 oveq2d A e A e i A = e A 1
22 13 18 21 3eqtrd A e A = e A 1
23 15 abscld A e A
24 23 recnd A e A
25 24 mulid1d A e A 1 = e A
26 efgt0 A 0 < e A
27 3 26 syl A 0 < e A
28 0re 0
29 ltle 0 e A 0 < e A 0 e A
30 28 14 29 sylancr A 0 < e A 0 e A
31 27 30 mpd A 0 e A
32 14 31 absidd A e A = e A
33 22 25 32 3eqtrd A e A = e A