Metamath Proof Explorer


Theorem absefi

Description: The absolute value of the exponential of an imaginary number is one. Equation 48 of Rudin p. 167. (Contributed by Jason Orendorff, 9-Feb-2007)

Ref Expression
Assertion absefi A e i A = 1

Proof

Step Hyp Ref Expression
1 recn A A
2 efival A e i A = cos A + i sin A
3 1 2 syl A e i A = cos A + i sin A
4 3 fveq2d A e i A = cos A + i sin A
5 recoscl A cos A
6 resincl A sin A
7 absreim cos A sin A cos A + i sin A = cos A 2 + sin A 2
8 5 6 7 syl2anc A cos A + i sin A = cos A 2 + sin A 2
9 5 resqcld A cos A 2
10 9 recnd A cos A 2
11 6 resqcld A sin A 2
12 11 recnd A sin A 2
13 10 12 addcomd A cos A 2 + sin A 2 = sin A 2 + cos A 2
14 sincossq A sin A 2 + cos A 2 = 1
15 1 14 syl A sin A 2 + cos A 2 = 1
16 13 15 eqtrd A cos A 2 + sin A 2 = 1
17 16 fveq2d A cos A 2 + sin A 2 = 1
18 sqrt1 1 = 1
19 17 18 eqtrdi A cos A 2 + sin A 2 = 1
20 8 19 eqtrd A cos A + i sin A = 1
21 4 20 eqtrd A e i A = 1