Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
fveq2d |
|
3 |
|
oveq2 |
|
4 |
2 3
|
eqeq12d |
|
5 |
|
oveq2 |
|
6 |
5
|
fveq2d |
|
7 |
|
oveq2 |
|
8 |
6 7
|
eqeq12d |
|
9 |
|
oveq2 |
|
10 |
9
|
fveq2d |
|
11 |
|
oveq2 |
|
12 |
10 11
|
eqeq12d |
|
13 |
|
oveq2 |
|
14 |
13
|
fveq2d |
|
15 |
|
oveq2 |
|
16 |
14 15
|
eqeq12d |
|
17 |
|
abs1 |
|
18 |
|
exp0 |
|
19 |
18
|
fveq2d |
|
20 |
|
abscl |
|
21 |
20
|
recnd |
|
22 |
21
|
exp0d |
|
23 |
17 19 22
|
3eqtr4a |
|
24 |
|
oveq1 |
|
25 |
24
|
adantl |
|
26 |
|
expp1 |
|
27 |
26
|
fveq2d |
|
28 |
|
expcl |
|
29 |
|
simpl |
|
30 |
|
absmul |
|
31 |
28 29 30
|
syl2anc |
|
32 |
27 31
|
eqtrd |
|
33 |
32
|
adantr |
|
34 |
|
expp1 |
|
35 |
21 34
|
sylan |
|
36 |
35
|
adantr |
|
37 |
25 33 36
|
3eqtr4d |
|
38 |
4 8 12 16 23 37
|
nn0indd |
|