Metamath Proof Explorer


Theorem absexpd

Description: Absolute value of positive integer exponentiation. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses abscld.1 φ A
absexpd.2 φ N 0
Assertion absexpd φ A N = A N

Proof

Step Hyp Ref Expression
1 abscld.1 φ A
2 absexpd.2 φ N 0
3 absexp A N 0 A N = A N
4 1 2 3 syl2anc φ A N = A N