Metamath Proof Explorer


Theorem absexpz

Description: Absolute value of integer exponentiation. (Contributed by Mario Carneiro, 6-Apr-2015)

Ref Expression
Assertion absexpz A A 0 N A N = A N

Proof

Step Hyp Ref Expression
1 elznn0nn N N 0 N N
2 absexp A N 0 A N = A N
3 2 ex A N 0 A N = A N
4 3 adantr A A 0 N 0 A N = A N
5 1cnd A A 0 N N 1
6 simpll A A 0 N N A
7 nnnn0 N N 0
8 7 ad2antll A A 0 N N N 0
9 6 8 expcld A A 0 N N A N
10 simplr A A 0 N N A 0
11 nnz N N
12 11 ad2antll A A 0 N N N
13 6 10 12 expne0d A A 0 N N A N 0
14 absdiv 1 A N A N 0 1 A N = 1 A N
15 5 9 13 14 syl3anc A A 0 N N 1 A N = 1 A N
16 abs1 1 = 1
17 16 oveq1i 1 A N = 1 A N
18 absexp A N 0 A N = A N
19 6 8 18 syl2anc A A 0 N N A N = A N
20 19 oveq2d A A 0 N N 1 A N = 1 A N
21 17 20 eqtrid A A 0 N N 1 A N = 1 A N
22 15 21 eqtrd A A 0 N N 1 A N = 1 A N
23 simprl A A 0 N N N
24 23 recnd A A 0 N N N
25 expneg2 A N N 0 A N = 1 A N
26 6 24 8 25 syl3anc A A 0 N N A N = 1 A N
27 26 fveq2d A A 0 N N A N = 1 A N
28 abscl A A
29 28 ad2antrr A A 0 N N A
30 29 recnd A A 0 N N A
31 expneg2 A N N 0 A N = 1 A N
32 30 24 8 31 syl3anc A A 0 N N A N = 1 A N
33 22 27 32 3eqtr4d A A 0 N N A N = A N
34 33 ex A A 0 N N A N = A N
35 4 34 jaod A A 0 N 0 N N A N = A N
36 35 3impia A A 0 N 0 N N A N = A N
37 1 36 syl3an3b A A 0 N A N = A N