| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elznn0nn |  | 
						
							| 2 |  | absexp |  | 
						
							| 3 | 2 | ex |  | 
						
							| 4 | 3 | adantr |  | 
						
							| 5 |  | 1cnd |  | 
						
							| 6 |  | simpll |  | 
						
							| 7 |  | nnnn0 |  | 
						
							| 8 | 7 | ad2antll |  | 
						
							| 9 | 6 8 | expcld |  | 
						
							| 10 |  | simplr |  | 
						
							| 11 |  | nnz |  | 
						
							| 12 | 11 | ad2antll |  | 
						
							| 13 | 6 10 12 | expne0d |  | 
						
							| 14 |  | absdiv |  | 
						
							| 15 | 5 9 13 14 | syl3anc |  | 
						
							| 16 |  | abs1 |  | 
						
							| 17 | 16 | oveq1i |  | 
						
							| 18 |  | absexp |  | 
						
							| 19 | 6 8 18 | syl2anc |  | 
						
							| 20 | 19 | oveq2d |  | 
						
							| 21 | 17 20 | eqtrid |  | 
						
							| 22 | 15 21 | eqtrd |  | 
						
							| 23 |  | simprl |  | 
						
							| 24 | 23 | recnd |  | 
						
							| 25 |  | expneg2 |  | 
						
							| 26 | 6 24 8 25 | syl3anc |  | 
						
							| 27 | 26 | fveq2d |  | 
						
							| 28 |  | abscl |  | 
						
							| 29 | 28 | ad2antrr |  | 
						
							| 30 | 29 | recnd |  | 
						
							| 31 |  | expneg2 |  | 
						
							| 32 | 30 24 8 31 | syl3anc |  | 
						
							| 33 | 22 27 32 | 3eqtr4d |  | 
						
							| 34 | 33 | ex |  | 
						
							| 35 | 4 34 | jaod |  | 
						
							| 36 | 35 | 3impia |  | 
						
							| 37 | 1 36 | syl3an3b |  |