Metamath Proof Explorer


Theorem absfico

Description: Mapping domain and codomain of the absolute value function. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion absfico abs : 0 +∞

Proof

Step Hyp Ref Expression
1 df-abs abs = x x x
2 0xr 0 *
3 2 a1i x 0 *
4 pnfxr +∞ *
5 4 a1i x +∞ *
6 absval x x = x x
7 abscl x x
8 6 7 eqeltrrd x x x
9 8 rexrd x x x *
10 cjmulrcl x x x
11 cjmulge0 x 0 x x
12 sqrtge0 x x 0 x x 0 x x
13 10 11 12 syl2anc x 0 x x
14 8 ltpnfd x x x < +∞
15 3 5 9 13 14 elicod x x x 0 +∞
16 1 15 fmpti abs : 0 +∞