Metamath Proof Explorer


Theorem absidm

Description: The absolute value function is idempotent. (Contributed by NM, 20-Nov-2004)

Ref Expression
Assertion absidm AA=A

Proof

Step Hyp Ref Expression
1 abscl AA
2 absge0 A0A
3 absid A0AA=A
4 1 2 3 syl2anc AA=A