Metamath Proof Explorer


Theorem absidm

Description: The absolute value function is idempotent. (Contributed by NM, 20-Nov-2004)

Ref Expression
Assertion absidm A A = A

Proof

Step Hyp Ref Expression
1 abscl A A
2 absge0 A 0 A
3 absid A 0 A A = A
4 1 2 3 syl2anc A A = A