Metamath Proof Explorer


Theorem absimle

Description: The absolute value of a complex number is greater than or equal to the absolute value of its imaginary part. (Contributed by NM, 17-Mar-2005) (Proof shortened by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion absimle A A A

Proof

Step Hyp Ref Expression
1 negicn i
2 1 a1i A i
3 id A A
4 2 3 mulcld A i A
5 absrele i A i A i A
6 4 5 syl A i A i A
7 imre A A = i A
8 7 fveq2d A A = i A
9 absmul i A i A = i A
10 1 9 mpan A i A = i A
11 ax-icn i
12 absneg i i = i
13 11 12 ax-mp i = i
14 absi i = 1
15 13 14 eqtri i = 1
16 15 oveq1i i A = 1 A
17 abscl A A
18 17 recnd A A
19 18 mulid2d A 1 A = A
20 16 19 eqtrid A i A = A
21 10 20 eqtr2d A A = i A
22 6 8 21 3brtr4d A A A