Metamath Proof Explorer


Theorem absimlere

Description: The absolute value of the imaginary part of a complex number is a lower bound of the distance to any real number. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses absimlere.1 φ A
absimlere.2 φ B
Assertion absimlere φ A B A

Proof

Step Hyp Ref Expression
1 absimlere.1 φ A
2 absimlere.2 φ B
3 2 recnd φ B
4 1 3 subcld φ A B
5 absimle A B A B A B
6 4 5 syl φ A B A B
7 1 3 imsubd φ A B = A B
8 2 reim0d φ B = 0
9 8 oveq2d φ A B = A 0
10 1 imcld φ A
11 10 recnd φ A
12 11 subid1d φ A 0 = A
13 7 9 12 3eqtrrd φ A = A B
14 13 fveq2d φ A = A B
15 3 1 abssubd φ B A = A B
16 6 14 15 3brtr4d φ A B A