Metamath Proof Explorer


Theorem absimnre

Description: The absolute value of the imaginary part of a non-real, complex number, is strictly positive. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses absimnre.1 φ A
absimnre.2 φ ¬ A
Assertion absimnre φ A +

Proof

Step Hyp Ref Expression
1 absimnre.1 φ A
2 absimnre.2 φ ¬ A
3 1 imcld φ A
4 3 recnd φ A
5 reim0b A A A = 0
6 1 5 syl φ A A = 0
7 2 6 mtbid φ ¬ A = 0
8 7 neqned φ A 0
9 4 8 absrpcld φ A +