Metamath Proof Explorer


Theorem absle

Description: Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005) (Revised by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion absle A B A B B A A B

Proof

Step Hyp Ref Expression
1 simpll A B A B A
2 1 renegcld A B A B A
3 1 recnd A B A B A
4 abscl A A
5 3 4 syl A B A B A
6 simplr A B A B B
7 leabs A A A
8 2 7 syl A B A B A A
9 absneg A A = A
10 3 9 syl A B A B A = A
11 8 10 breqtrd A B A B A A
12 simpr A B A B A B
13 2 5 6 11 12 letrd A B A B A B
14 leabs A A A
15 14 ad2antrr A B A B A A
16 1 5 6 15 12 letrd A B A B A B
17 13 16 jca A B A B A B A B
18 17 ex A B A B A B A B
19 absor A A = A A = A
20 19 adantr A B A = A A = A
21 breq1 A = A A B A B
22 21 biimprd A = A A B A B
23 breq1 A = A A B A B
24 23 biimprd A = A A B A B
25 22 24 jaoa A = A A = A A B A B A B
26 25 ancomsd A = A A = A A B A B A B
27 20 26 syl A B A B A B A B
28 18 27 impbid A B A B A B A B
29 lenegcon1 A B A B B A
30 29 anbi1d A B A B A B B A A B
31 28 30 bitrd A B A B B A A B