Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|
2 |
1
|
renegcld |
|
3 |
1
|
recnd |
|
4 |
|
abscl |
|
5 |
3 4
|
syl |
|
6 |
|
simplr |
|
7 |
|
leabs |
|
8 |
2 7
|
syl |
|
9 |
|
absneg |
|
10 |
3 9
|
syl |
|
11 |
8 10
|
breqtrd |
|
12 |
|
simpr |
|
13 |
2 5 6 11 12
|
letrd |
|
14 |
|
leabs |
|
15 |
14
|
ad2antrr |
|
16 |
1 5 6 15 12
|
letrd |
|
17 |
13 16
|
jca |
|
18 |
17
|
ex |
|
19 |
|
absor |
|
20 |
19
|
adantr |
|
21 |
|
breq1 |
|
22 |
21
|
biimprd |
|
23 |
|
breq1 |
|
24 |
23
|
biimprd |
|
25 |
22 24
|
jaoa |
|
26 |
25
|
ancomsd |
|
27 |
20 26
|
syl |
|
28 |
18 27
|
impbid |
|
29 |
|
lenegcon1 |
|
30 |
29
|
anbi1d |
|
31 |
28 30
|
bitrd |
|