Step |
Hyp |
Ref |
Expression |
1 |
|
absvalsq |
|
2 |
1
|
adantr |
|
3 |
|
abscl |
|
4 |
3
|
adantr |
|
5 |
4
|
recnd |
|
6 |
5
|
sqvald |
|
7 |
2 6
|
eqtr3d |
|
8 |
7
|
oveq1d |
|
9 |
|
simpl |
|
10 |
9
|
cjcld |
|
11 |
|
abs00 |
|
12 |
11
|
necon3bid |
|
13 |
12
|
biimpar |
|
14 |
9 10 5 13
|
div23d |
|
15 |
5 5 13
|
divcan3d |
|
16 |
8 14 15
|
3eqtr3d |
|
17 |
16
|
fveq2d |
|
18 |
9 5 13
|
divcld |
|
19 |
18 10
|
cjmuld |
|
20 |
9
|
cjcjd |
|
21 |
20
|
oveq2d |
|
22 |
19 21
|
eqtrd |
|
23 |
4
|
cjred |
|
24 |
17 22 23
|
3eqtr3d |
|
25 |
24 16
|
oveq12d |
|
26 |
5
|
2timesd |
|
27 |
25 26
|
eqtr4d |
|