Metamath Proof Explorer


Theorem abslem2

Description: Lemma involving absolute values. (Contributed by NM, 11-Oct-1999) (Revised by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion abslem2 A A 0 A A A + A A A = 2 A

Proof

Step Hyp Ref Expression
1 absvalsq A A 2 = A A
2 1 adantr A A 0 A 2 = A A
3 abscl A A
4 3 adantr A A 0 A
5 4 recnd A A 0 A
6 5 sqvald A A 0 A 2 = A A
7 2 6 eqtr3d A A 0 A A = A A
8 7 oveq1d A A 0 A A A = A A A
9 simpl A A 0 A
10 9 cjcld A A 0 A
11 abs00 A A = 0 A = 0
12 11 necon3bid A A 0 A 0
13 12 biimpar A A 0 A 0
14 9 10 5 13 div23d A A 0 A A A = A A A
15 5 5 13 divcan3d A A 0 A A A = A
16 8 14 15 3eqtr3d A A 0 A A A = A
17 16 fveq2d A A 0 A A A = A
18 9 5 13 divcld A A 0 A A
19 18 10 cjmuld A A 0 A A A = A A A
20 9 cjcjd A A 0 A = A
21 20 oveq2d A A 0 A A A = A A A
22 19 21 eqtrd A A 0 A A A = A A A
23 4 cjred A A 0 A = A
24 17 22 23 3eqtr3d A A 0 A A A = A
25 24 16 oveq12d A A 0 A A A + A A A = A + A
26 5 2timesd A A 0 2 A = A + A
27 25 26 eqtr4d A A 0 A A A + A A A = 2 A