Metamath Proof Explorer


Theorem abslogimle

Description: The imaginary part of the logarithm function has absolute value less than pi. (Contributed by Mario Carneiro, 3-Jul-2017)

Ref Expression
Assertion abslogimle A A 0 log A π

Proof

Step Hyp Ref Expression
1 pire π
2 1 a1i A A 0 π
3 2 renegcld A A 0 π
4 logcl A A 0 log A
5 4 imcld A A 0 log A
6 logimcl A A 0 π < log A log A π
7 6 simpld A A 0 π < log A
8 3 5 7 ltled A A 0 π log A
9 6 simprd A A 0 log A π
10 5 2 absled A A 0 log A π π log A log A π
11 8 9 10 mpbir2and A A 0 log A π