Metamath Proof Explorer


Theorem abslogle

Description: Bound on the magnitude of the complex logarithm function. (Contributed by Mario Carneiro, 3-Jul-2017)

Ref Expression
Assertion abslogle A A 0 log A log A + π

Proof

Step Hyp Ref Expression
1 logcl A A 0 log A
2 1 abscld A A 0 log A
3 absrpcl A A 0 A +
4 relogcl A + log A
5 3 4 syl A A 0 log A
6 5 recnd A A 0 log A
7 6 abscld A A 0 log A
8 1 imcld A A 0 log A
9 8 recnd A A 0 log A
10 9 abscld A A 0 log A
11 7 10 readdcld A A 0 log A + log A
12 pire π
13 12 a1i A A 0 π
14 7 13 readdcld A A 0 log A + π
15 1 recld A A 0 log A
16 15 recnd A A 0 log A
17 ax-icn i
18 17 a1i A A 0 i
19 18 9 mulcld A A 0 i log A
20 16 19 abstrid A A 0 log A + i log A log A + i log A
21 1 replimd A A 0 log A = log A + i log A
22 21 fveq2d A A 0 log A = log A + i log A
23 relog A A 0 log A = log A
24 23 eqcomd A A 0 log A = log A
25 24 fveq2d A A 0 log A = log A
26 18 9 absmuld A A 0 i log A = i log A
27 absi i = 1
28 27 oveq1i i log A = 1 log A
29 10 recnd A A 0 log A
30 29 mulid2d A A 0 1 log A = log A
31 28 30 syl5eq A A 0 i log A = log A
32 26 31 eqtr2d A A 0 log A = i log A
33 25 32 oveq12d A A 0 log A + log A = log A + i log A
34 20 22 33 3brtr4d A A 0 log A log A + log A
35 abslogimle A A 0 log A π
36 10 13 7 35 leadd2dd A A 0 log A + log A log A + π
37 2 11 14 34 36 letrd A A 0 log A log A + π