Metamath Proof Explorer


Theorem abslt

Description: Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005) (Revised by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion abslt A B A < B B < A A < B

Proof

Step Hyp Ref Expression
1 simpll A B A < B A
2 1 renegcld A B A < B A
3 1 recnd A B A < B A
4 abscl A A
5 3 4 syl A B A < B A
6 simplr A B A < B B
7 leabs A A A
8 2 7 syl A B A < B A A
9 absneg A A = A
10 3 9 syl A B A < B A = A
11 8 10 breqtrd A B A < B A A
12 simpr A B A < B A < B
13 2 5 6 11 12 lelttrd A B A < B A < B
14 leabs A A A
15 14 ad2antrr A B A < B A A
16 1 5 6 15 12 lelttrd A B A < B A < B
17 13 16 jca A B A < B A < B A < B
18 17 ex A B A < B A < B A < B
19 absor A A = A A = A
20 19 adantr A B A = A A = A
21 breq1 A = A A < B A < B
22 21 biimprd A = A A < B A < B
23 breq1 A = A A < B A < B
24 23 biimprd A = A A < B A < B
25 22 24 jaoa A = A A = A A < B A < B A < B
26 25 ancomsd A = A A = A A < B A < B A < B
27 20 26 syl A B A < B A < B A < B
28 18 27 impbid A B A < B A < B A < B
29 ltnegcon1 A B A < B B < A
30 29 anbi1d A B A < B A < B B < A A < B
31 28 30 bitrd A B A < B B < A A < B