Metamath Proof Explorer


Theorem abslt2sqd

Description: Comparison of the square of two numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses abslt2sqd.a φ A
abslt2sqd.b φ B
abslt2sqd.l φ A < B
Assertion abslt2sqd φ A 2 < B 2

Proof

Step Hyp Ref Expression
1 abslt2sqd.a φ A
2 abslt2sqd.b φ B
3 abslt2sqd.l φ A < B
4 1 recnd φ A
5 4 abscld φ A
6 4 absge0d φ 0 A
7 2 recnd φ B
8 7 abscld φ B
9 7 absge0d φ 0 B
10 lt2sq A 0 A B 0 B A < B A 2 < B 2
11 5 6 8 9 10 syl22anc φ A < B A 2 < B 2
12 3 11 mpbid φ A 2 < B 2
13 absresq A A 2 = A 2
14 1 13 syl φ A 2 = A 2
15 absresq B B 2 = B 2
16 2 15 syl φ B 2 = B 2
17 14 16 breq12d φ A 2 < B 2 A 2 < B 2
18 12 17 mpbid φ A 2 < B 2