Metamath Proof Explorer


Theorem absltd

Description: Absolute value and 'less than' relation. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses absltd.1 φ A
absltd.2 φ B
Assertion absltd φ A < B B < A A < B

Proof

Step Hyp Ref Expression
1 absltd.1 φ A
2 absltd.2 φ B
3 abslt A B A < B B < A A < B
4 1 2 3 syl2anc φ A < B B < A A < B