Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|
2 |
|
2cn |
|
3 |
|
2ne0 |
|
4 |
|
divcan3 |
|
5 |
2 3 4
|
mp3an23 |
|
6 |
1 5
|
syl |
|
7 |
6
|
ad2antlr |
|
8 |
|
ltle |
|
9 |
8
|
imp |
|
10 |
|
abssubge0 |
|
11 |
10
|
3expa |
|
12 |
9 11
|
syldan |
|
13 |
12
|
oveq2d |
|
14 |
|
recn |
|
15 |
|
simpr |
|
16 |
|
simpl |
|
17 |
15 16 15
|
ppncand |
|
18 |
|
2times |
|
19 |
18
|
adantl |
|
20 |
17 19
|
eqtr4d |
|
21 |
14 1 20
|
syl2an |
|
22 |
21
|
adantr |
|
23 |
13 22
|
eqtrd |
|
24 |
23
|
oveq1d |
|
25 |
|
ltnle |
|
26 |
25
|
biimpa |
|
27 |
26
|
iffalsed |
|
28 |
7 24 27
|
3eqtr4rd |
|
29 |
28
|
ancom1s |
|
30 |
|
divcan3 |
|
31 |
2 3 30
|
mp3an23 |
|
32 |
14 31
|
syl |
|
33 |
32
|
ad2antlr |
|
34 |
|
abssuble0 |
|
35 |
34
|
3expa |
|
36 |
35
|
oveq2d |
|
37 |
|
simpr |
|
38 |
|
simpl |
|
39 |
37 38 37
|
ppncand |
|
40 |
|
addcom |
|
41 |
40
|
oveq1d |
|
42 |
|
2times |
|
43 |
42
|
adantl |
|
44 |
39 41 43
|
3eqtr4d |
|
45 |
1 14 44
|
syl2an |
|
46 |
45
|
adantr |
|
47 |
36 46
|
eqtrd |
|
48 |
47
|
oveq1d |
|
49 |
|
iftrue |
|
50 |
49
|
adantl |
|
51 |
33 48 50
|
3eqtr4rd |
|
52 |
|
simpr |
|
53 |
|
simpl |
|
54 |
29 51 52 53
|
ltlecasei |
|