Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Square root; absolute value
absmod0
Next ⟩
absexp
Metamath Proof Explorer
Ascii
Unicode
Theorem
absmod0
Description:
A
is divisible by
B
iff its absolute value is.
(Contributed by
Jeff Madsen
, 2-Sep-2009)
Ref
Expression
Assertion
absmod0
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
A
mod
B
=
0
↔
A
mod
B
=
0
Proof
Step
Hyp
Ref
Expression
1
oveq1
⊢
A
=
A
→
A
mod
B
=
A
mod
B
2
1
eqcoms
⊢
A
=
A
→
A
mod
B
=
A
mod
B
3
2
eqeq1d
⊢
A
=
A
→
A
mod
B
=
0
↔
A
mod
B
=
0
4
3
a1i
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
A
=
A
→
A
mod
B
=
0
↔
A
mod
B
=
0
5
negmod0
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
A
mod
B
=
0
↔
−
A
mod
B
=
0
6
oveq1
⊢
A
=
−
A
→
A
mod
B
=
−
A
mod
B
7
6
eqeq1d
⊢
A
=
−
A
→
A
mod
B
=
0
↔
−
A
mod
B
=
0
8
7
bibi2d
⊢
A
=
−
A
→
A
mod
B
=
0
↔
A
mod
B
=
0
↔
A
mod
B
=
0
↔
−
A
mod
B
=
0
9
5
8
syl5ibrcom
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
A
=
−
A
→
A
mod
B
=
0
↔
A
mod
B
=
0
10
absor
⊢
A
∈
ℝ
→
A
=
A
∨
A
=
−
A
11
10
adantr
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
A
=
A
∨
A
=
−
A
12
4
9
11
mpjaod
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
A
mod
B
=
0
↔
A
mod
B
=
0