Metamath Proof Explorer


Theorem absmul

Description: Absolute value distributes over multiplication. Proposition 10-3.7(f) of Gleason p. 133. (Contributed by NM, 11-Oct-1999) (Revised by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion absmul A B A B = A B

Proof

Step Hyp Ref Expression
1 cjmul A B A B = A B
2 1 oveq2d A B A B A B = A B A B
3 simpl A B A
4 simpr A B B
5 3 cjcld A B A
6 4 cjcld A B B
7 3 4 5 6 mul4d A B A B A B = A A B B
8 2 7 eqtrd A B A B A B = A A B B
9 8 fveq2d A B A B A B = A A B B
10 cjmulrcl A A A
11 cjmulge0 A 0 A A
12 10 11 jca A A A 0 A A
13 cjmulrcl B B B
14 cjmulge0 B 0 B B
15 13 14 jca B B B 0 B B
16 sqrtmul A A 0 A A B B 0 B B A A B B = A A B B
17 12 15 16 syl2an A B A A B B = A A B B
18 9 17 eqtrd A B A B A B = A A B B
19 mulcl A B A B
20 absval A B A B = A B A B
21 19 20 syl A B A B = A B A B
22 absval A A = A A
23 absval B B = B B
24 22 23 oveqan12d A B A B = A A B B
25 18 21 24 3eqtr4d A B A B = A B