| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gcdcl |  | 
						
							| 2 |  | nn0re |  | 
						
							| 3 |  | nn0ge0 |  | 
						
							| 4 | 2 3 | absidd |  | 
						
							| 5 | 1 4 | syl |  | 
						
							| 6 | 5 | oveq2d |  | 
						
							| 7 | 6 | 3adant1 |  | 
						
							| 8 |  | zcn |  | 
						
							| 9 | 1 | nn0cnd |  | 
						
							| 10 |  | absmul |  | 
						
							| 11 | 8 9 10 | syl2an |  | 
						
							| 12 | 11 | 3impb |  | 
						
							| 13 |  | zcn |  | 
						
							| 14 |  | zcn |  | 
						
							| 15 |  | absmul |  | 
						
							| 16 |  | absmul |  | 
						
							| 17 | 15 16 | oveqan12d |  | 
						
							| 18 | 17 | 3impdi |  | 
						
							| 19 | 8 13 14 18 | syl3an |  | 
						
							| 20 |  | zmulcl |  | 
						
							| 21 |  | zmulcl |  | 
						
							| 22 |  | gcdabs |  | 
						
							| 23 | 20 21 22 | syl2an |  | 
						
							| 24 | 23 | 3impdi |  | 
						
							| 25 |  | nn0abscl |  | 
						
							| 26 |  | zabscl |  | 
						
							| 27 |  | zabscl |  | 
						
							| 28 |  | mulgcd |  | 
						
							| 29 | 25 26 27 28 | syl3an |  | 
						
							| 30 | 19 24 29 | 3eqtr3d |  | 
						
							| 31 |  | gcdabs |  | 
						
							| 32 | 31 | 3adant1 |  | 
						
							| 33 | 32 | oveq2d |  | 
						
							| 34 | 30 33 | eqtrd |  | 
						
							| 35 | 7 12 34 | 3eqtr4rd |  |