Metamath Proof Explorer


Theorem absne0d

Description: The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of Gleason p. 133. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses abscld.1 φ A
absne0d.2 φ A 0
Assertion absne0d φ A 0

Proof

Step Hyp Ref Expression
1 abscld.1 φ A
2 absne0d.2 φ A 0
3 1 abs00ad φ A = 0 A = 0
4 3 necon3bid φ A 0 A 0
5 2 4 mpbird φ A 0