Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Square root; absolute value
absneg
Next ⟩
abscl
Metamath Proof Explorer
Ascii
Unicode
Theorem
absneg
Description:
Absolute value of the opposite.
(Contributed by
NM
, 27-Feb-2005)
Ref
Expression
Assertion
absneg
⊢
A
∈
ℂ
→
−
A
=
A
Proof
Step
Hyp
Ref
Expression
1
cjneg
⊢
A
∈
ℂ
→
−
A
‾
=
−
A
‾
2
1
oveq2d
⊢
A
∈
ℂ
→
−
A
⁢
−
A
‾
=
−
A
⁢
−
A
‾
3
cjcl
⊢
A
∈
ℂ
→
A
‾
∈
ℂ
4
mul2neg
⊢
A
∈
ℂ
∧
A
‾
∈
ℂ
→
−
A
⁢
−
A
‾
=
A
⁢
A
‾
5
3
4
mpdan
⊢
A
∈
ℂ
→
−
A
⁢
−
A
‾
=
A
⁢
A
‾
6
2
5
eqtrd
⊢
A
∈
ℂ
→
−
A
⁢
−
A
‾
=
A
⁢
A
‾
7
6
fveq2d
⊢
A
∈
ℂ
→
−
A
⁢
−
A
‾
=
A
⁢
A
‾
8
negcl
⊢
A
∈
ℂ
→
−
A
∈
ℂ
9
absval
⊢
−
A
∈
ℂ
→
−
A
=
−
A
⁢
−
A
‾
10
8
9
syl
⊢
A
∈
ℂ
→
−
A
=
−
A
⁢
−
A
‾
11
absval
⊢
A
∈
ℂ
→
A
=
A
⁢
A
‾
12
7
10
11
3eqtr4d
⊢
A
∈
ℂ
→
−
A
=
A