Metamath Proof Explorer


Theorem absnegd

Description: Absolute value of negative. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis abscld.1 φ A
Assertion absnegd φ A = A

Proof

Step Hyp Ref Expression
1 abscld.1 φ A
2 absneg A A = A
3 1 2 syl φ A = A