Metamath Proof Explorer


Theorem absneu

Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006)

Ref Expression
Assertion absneu A V x | φ = A ∃! x φ

Proof

Step Hyp Ref Expression
1 sneq y = A y = A
2 1 eqeq2d y = A x | φ = y x | φ = A
3 2 spcegv A V x | φ = A y x | φ = y
4 3 imp A V x | φ = A y x | φ = y
5 euabsn2 ∃! x φ y x | φ = y
6 4 5 sylibr A V x | φ = A ∃! x φ