Metamath Proof Explorer


Theorem absnpncan2d

Description: Triangular inequality, combined with cancellation law for subtraction (applied twice). (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses absnpncan2d.a φ A
absnpncan2d.b φ B
absnpncan2d.c φ C
absnpncan2d.d φ D
Assertion absnpncan2d φ A D A B + B C + C D

Proof

Step Hyp Ref Expression
1 absnpncan2d.a φ A
2 absnpncan2d.b φ B
3 absnpncan2d.c φ C
4 absnpncan2d.d φ D
5 1 4 subcld φ A D
6 5 abscld φ A D
7 1 3 subcld φ A C
8 7 abscld φ A C
9 3 4 subcld φ C D
10 9 abscld φ C D
11 8 10 readdcld φ A C + C D
12 1 2 subcld φ A B
13 12 abscld φ A B
14 2 3 subcld φ B C
15 14 abscld φ B C
16 13 15 readdcld φ A B + B C
17 16 10 readdcld φ A B + B C + C D
18 1 4 3 abs3difd φ A D A C + C D
19 1 3 2 abs3difd φ A C A B + B C
20 8 16 10 19 leadd1dd φ A C + C D A B + B C + C D
21 6 11 17 18 20 letrd φ A D A B + B C + C D