Metamath Proof Explorer


Theorem absnpncan3d

Description: Triangular inequality, combined with cancellation law for subtraction (applied three times). (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses absnpncan3d.a φ A
absnpncan3d.b φ B
absnpncan3d.c φ C
absnpncan3d.d φ D
absnpncan3d.e φ E
Assertion absnpncan3d φ A E A B + B C + C D + D E

Proof

Step Hyp Ref Expression
1 absnpncan3d.a φ A
2 absnpncan3d.b φ B
3 absnpncan3d.c φ C
4 absnpncan3d.d φ D
5 absnpncan3d.e φ E
6 1 5 subcld φ A E
7 6 abscld φ A E
8 1 4 subcld φ A D
9 8 abscld φ A D
10 4 5 subcld φ D E
11 10 abscld φ D E
12 9 11 readdcld φ A D + D E
13 1 2 subcld φ A B
14 13 abscld φ A B
15 2 3 subcld φ B C
16 15 abscld φ B C
17 14 16 readdcld φ A B + B C
18 3 4 subcld φ C D
19 18 abscld φ C D
20 17 19 readdcld φ A B + B C + C D
21 20 11 readdcld φ A B + B C + C D + D E
22 1 5 4 abs3difd φ A E A D + D E
23 1 2 3 4 absnpncan2d φ A D A B + B C + C D
24 9 20 11 23 leadd1dd φ A D + D E A B + B C + C D + D E
25 7 12 21 22 24 letrd φ A E A B + B C + C D + D E