Metamath Proof Explorer


Theorem absproddvds

Description: The absolute value of the product of the elements of a finite subset of the integers is divisible by each element of this subset. (Contributed by AV, 21-Aug-2020)

Ref Expression
Hypotheses absproddvds.s φ Z
absproddvds.f φ Z Fin
absproddvds.p P = z Z z
Assertion absproddvds φ m Z m P

Proof

Step Hyp Ref Expression
1 absproddvds.s φ Z
2 absproddvds.f φ Z Fin
3 absproddvds.p P = z Z z
4 2 1 fproddvdsd φ m Z m z Z z
5 1 sselda φ m Z m
6 1 sselda φ z Z z
7 2 6 fprodzcl φ z Z z
8 7 adantr φ m Z z Z z
9 dvdsabsb m z Z z m z Z z m z Z z
10 5 8 9 syl2anc φ m Z m z Z z m z Z z
11 10 biimpd φ m Z m z Z z m z Z z
12 11 ralimdva φ m Z m z Z z m Z m z Z z
13 4 12 mpd φ m Z m z Z z
14 3 breq2i m P m z Z z
15 14 ralbii m Z m P m Z m z Z z
16 13 15 sylibr φ m Z m P