Metamath Proof Explorer


Theorem absprodnn

Description: The absolute value of the product of the elements of a finite subset of the integers not containing 0 is a poitive integer. (Contributed by AV, 21-Aug-2020)

Ref Expression
Hypotheses absproddvds.s φ Z
absproddvds.f φ Z Fin
absproddvds.p P = z Z z
absprodnn.z φ 0 Z
Assertion absprodnn φ P

Proof

Step Hyp Ref Expression
1 absproddvds.s φ Z
2 absproddvds.f φ Z Fin
3 absproddvds.p P = z Z z
4 absprodnn.z φ 0 Z
5 1 sselda φ z Z z
6 2 5 fprodzcl φ z Z z
7 5 zcnd φ z Z z
8 elnelne2 z Z 0 Z z 0
9 8 expcom 0 Z z Z z 0
10 4 9 syl φ z Z z 0
11 10 imp φ z Z z 0
12 2 7 11 fprodn0 φ z Z z 0
13 nnabscl z Z z z Z z 0 z Z z
14 6 12 13 syl2anc φ z Z z
15 3 14 eqeltrid φ P