Metamath Proof Explorer


Theorem absre

Description: Absolute value of a real number. (Contributed by NM, 17-Mar-2005)

Ref Expression
Assertion absre A A = A 2

Proof

Step Hyp Ref Expression
1 recn A A
2 absval A A = A A
3 1 2 syl A A = A A
4 1 sqvald A A 2 = A A
5 cjre A A = A
6 5 oveq2d A A A = A A
7 4 6 eqtr4d A A 2 = A A
8 7 fveq2d A A 2 = A A
9 3 8 eqtr4d A A = A 2