Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Square root; absolute value
absre
Next ⟩
absresq
Metamath Proof Explorer
Ascii
Unicode
Theorem
absre
Description:
Absolute value of a real number.
(Contributed by
NM
, 17-Mar-2005)
Ref
Expression
Assertion
absre
⊢
A
∈
ℝ
→
A
=
A
2
Proof
Step
Hyp
Ref
Expression
1
recn
⊢
A
∈
ℝ
→
A
∈
ℂ
2
absval
⊢
A
∈
ℂ
→
A
=
A
⁢
A
‾
3
1
2
syl
⊢
A
∈
ℝ
→
A
=
A
⁢
A
‾
4
1
sqvald
⊢
A
∈
ℝ
→
A
2
=
A
⁢
A
5
cjre
⊢
A
∈
ℝ
→
A
‾
=
A
6
5
oveq2d
⊢
A
∈
ℝ
→
A
⁢
A
‾
=
A
⁢
A
7
4
6
eqtr4d
⊢
A
∈
ℝ
→
A
2
=
A
⁢
A
‾
8
7
fveq2d
⊢
A
∈
ℝ
→
A
2
=
A
⁢
A
‾
9
3
8
eqtr4d
⊢
A
∈
ℝ
→
A
=
A
2