Metamath Proof Explorer


Theorem absreim

Description: Absolute value of a number that has been decomposed into real and imaginary parts. (Contributed by NM, 14-Jan-2006)

Ref Expression
Assertion absreim A B A + i B = A 2 + B 2

Proof

Step Hyp Ref Expression
1 recn A A
2 ax-icn i
3 recn B B
4 mulcl i B i B
5 2 3 4 sylancr B i B
6 addcl A i B A + i B
7 1 5 6 syl2an A B A + i B
8 abscl A + i B A + i B
9 7 8 syl A B A + i B
10 absge0 A + i B 0 A + i B
11 7 10 syl A B 0 A + i B
12 sqrtsq A + i B 0 A + i B A + i B 2 = A + i B
13 9 11 12 syl2anc A B A + i B 2 = A + i B
14 absreimsq A B A + i B 2 = A 2 + B 2
15 14 fveq2d A B A + i B 2 = A 2 + B 2
16 13 15 eqtr3d A B A + i B = A 2 + B 2