Metamath Proof Explorer


Theorem absreimsq

Description: Square of the absolute value of a number that has been decomposed into real and imaginary parts. (Contributed by NM, 1-Feb-2007)

Ref Expression
Assertion absreimsq A B A + i B 2 = A 2 + B 2

Proof

Step Hyp Ref Expression
1 recn A A
2 ax-icn i
3 recn B B
4 mulcl i B i B
5 2 3 4 sylancr B i B
6 addcl A i B A + i B
7 1 5 6 syl2an A B A + i B
8 absvalsq2 A + i B A + i B 2 = A + i B 2 + A + i B 2
9 7 8 syl A B A + i B 2 = A + i B 2 + A + i B 2
10 crre A B A + i B = A
11 10 oveq1d A B A + i B 2 = A 2
12 crim A B A + i B = B
13 12 oveq1d A B A + i B 2 = B 2
14 11 13 oveq12d A B A + i B 2 + A + i B 2 = A 2 + B 2
15 9 14 eqtrd A B A + i B 2 = A 2 + B 2