Metamath Proof Explorer


Theorem absrele

Description: The absolute value of a complex number is greater than or equal to the absolute value of its real part. (Contributed by NM, 1-Apr-2005)

Ref Expression
Assertion absrele A A A

Proof

Step Hyp Ref Expression
1 imcl A A
2 1 sqge0d A 0 A 2
3 recl A A
4 3 resqcld A A 2
5 1 resqcld A A 2
6 4 5 addge01d A 0 A 2 A 2 A 2 + A 2
7 2 6 mpbid A A 2 A 2 + A 2
8 3 sqge0d A 0 A 2
9 4 5 readdcld A A 2 + A 2
10 4 5 8 2 addge0d A 0 A 2 + A 2
11 sqrtle A 2 0 A 2 A 2 + A 2 0 A 2 + A 2 A 2 A 2 + A 2 A 2 A 2 + A 2
12 4 8 9 10 11 syl22anc A A 2 A 2 + A 2 A 2 A 2 + A 2
13 7 12 mpbid A A 2 A 2 + A 2
14 absre A A = A 2
15 3 14 syl A A = A 2
16 absval2 A A = A 2 + A 2
17 13 15 16 3brtr4d A A A