Metamath Proof Explorer


Theorem absresq

Description: Square of the absolute value of a real number. (Contributed by NM, 16-Jan-2006)

Ref Expression
Assertion absresq A A 2 = A 2

Proof

Step Hyp Ref Expression
1 cjre A A = A
2 1 oveq2d A A A = A A
3 recn A A
4 absvalsq A A 2 = A A
5 3 4 syl A A 2 = A A
6 3 sqvald A A 2 = A A
7 2 5 6 3eqtr4d A A 2 = A 2