Metamath Proof Explorer


Theorem absrpcl

Description: The absolute value of a nonzero number is a positive real. (Contributed by FL, 27-Dec-2007) (Proof shortened by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion absrpcl A A 0 A +

Proof

Step Hyp Ref Expression
1 absval A A = A A
2 1 adantr A A 0 A = A A
3 simpl A A 0 A
4 3 cjmulrcld A A 0 A A
5 3 cjmulge0d A A 0 0 A A
6 3 cjcld A A 0 A
7 simpr A A 0 A 0
8 3 7 cjne0d A A 0 A 0
9 3 6 7 8 mulne0d A A 0 A A 0
10 4 5 9 ne0gt0d A A 0 0 < A A
11 4 10 elrpd A A 0 A A +
12 rpsqrtcl A A + A A +
13 11 12 syl A A 0 A A +
14 2 13 eqeltrd A A 0 A +