Metamath Proof Explorer


Theorem abss

Description: Class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006)

Ref Expression
Assertion abss x | φ A x φ x A

Proof

Step Hyp Ref Expression
1 abid2 x | x A = A
2 1 sseq2i x | φ x | x A x | φ A
3 ss2ab x | φ x | x A x φ x A
4 2 3 bitr3i x | φ A x φ x A