Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
abss
Next ⟩
ssab
Metamath Proof Explorer
Ascii
Unicode
Theorem
abss
Description:
Class abstraction in a subclass relationship.
(Contributed by
NM
, 16-Aug-2006)
Ref
Expression
Assertion
abss
⊢
x
|
φ
⊆
A
↔
∀
x
φ
→
x
∈
A
Proof
Step
Hyp
Ref
Expression
1
abid2
⊢
x
|
x
∈
A
=
A
2
1
sseq2i
⊢
x
|
φ
⊆
x
|
x
∈
A
↔
x
|
φ
⊆
A
3
ss2ab
⊢
x
|
φ
⊆
x
|
x
∈
A
↔
∀
x
φ
→
x
∈
A
4
2
3
bitr3i
⊢
x
|
φ
⊆
A
↔
∀
x
φ
→
x
∈
A