Metamath Proof Explorer


Theorem abssexg

Description: Existence of a class of subsets. (Contributed by NM, 15-Jul-2006) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion abssexg A V x | x A φ V

Proof

Step Hyp Ref Expression
1 pwexg A V 𝒫 A V
2 df-pw 𝒫 A = x | x A
3 2 eleq1i 𝒫 A V x | x A V
4 simpl x A φ x A
5 4 ss2abi x | x A φ x | x A
6 ssexg x | x A φ x | x A x | x A V x | x A φ V
7 5 6 mpan x | x A V x | x A φ V
8 3 7 sylbi 𝒫 A V x | x A φ V
9 1 8 syl A V x | x A φ V