Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
abssi
Next ⟩
ss2rab
Metamath Proof Explorer
Ascii
Unicode
Theorem
abssi
Description:
Inference of abstraction subclass from implication.
(Contributed by
NM
, 20-Jan-2006)
Ref
Expression
Hypothesis
abssi.1
⊢
φ
→
x
∈
A
Assertion
abssi
⊢
x
|
φ
⊆
A
Proof
Step
Hyp
Ref
Expression
1
abssi.1
⊢
φ
→
x
∈
A
2
1
ss2abi
⊢
x
|
φ
⊆
x
|
x
∈
A
3
abid2
⊢
x
|
x
∈
A
=
A
4
2
3
sseqtri
⊢
x
|
φ
⊆
A