Metamath Proof Explorer


Theorem abssi

Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006)

Ref Expression
Hypothesis abssi.1 φ x A
Assertion abssi x | φ A

Proof

Step Hyp Ref Expression
1 abssi.1 φ x A
2 1 ss2abi x | φ x | x A
3 abid2 x | x A = A
4 2 3 sseqtri x | φ A