Metamath Proof Explorer


Theorem abssinper

Description: The absolute value of sine has period _pi . (Contributed by NM, 17-Aug-2008)

Ref Expression
Assertion abssinper A K sin A + K π = sin A

Proof

Step Hyp Ref Expression
1 zcn K K
2 halfcl K K 2
3 2cn 2
4 picn π
5 mulass K 2 2 π K 2 2 π = K 2 2 π
6 3 4 5 mp3an23 K 2 K 2 2 π = K 2 2 π
7 2 6 syl K K 2 2 π = K 2 2 π
8 2ne0 2 0
9 divcan1 K 2 2 0 K 2 2 = K
10 3 8 9 mp3an23 K K 2 2 = K
11 10 oveq1d K K 2 2 π = K π
12 7 11 eqtr3d K K 2 2 π = K π
13 1 12 syl K K 2 2 π = K π
14 13 adantl A K K 2 2 π = K π
15 14 oveq2d A K A + K 2 2 π = A + K π
16 15 fveq2d A K sin A + K 2 2 π = sin A + K π
17 16 eqcomd A K sin A + K π = sin A + K 2 2 π
18 17 adantr A K K 2 sin A + K π = sin A + K 2 2 π
19 sinper A K 2 sin A + K 2 2 π = sin A
20 19 adantlr A K K 2 sin A + K 2 2 π = sin A
21 18 20 eqtrd A K K 2 sin A + K π = sin A
22 21 fveq2d A K K 2 sin A + K π = sin A
23 peano2cn K K + 1
24 halfcl K + 1 K + 1 2
25 23 24 syl K K + 1 2
26 3 4 mulcli 2 π
27 mulcl K + 1 2 2 π K + 1 2 2 π
28 25 26 27 sylancl K K + 1 2 2 π
29 subadd23 A π K + 1 2 2 π A - π + K + 1 2 2 π = A + K + 1 2 2 π - π
30 4 29 mp3an2 A K + 1 2 2 π A - π + K + 1 2 2 π = A + K + 1 2 2 π - π
31 28 30 sylan2 A K A - π + K + 1 2 2 π = A + K + 1 2 2 π - π
32 divcan1 K + 1 2 2 0 K + 1 2 2 = K + 1
33 3 8 32 mp3an23 K + 1 K + 1 2 2 = K + 1
34 23 33 syl K K + 1 2 2 = K + 1
35 34 oveq1d K K + 1 2 2 π = K + 1 π
36 ax-1cn 1
37 adddir K 1 π K + 1 π = K π + 1 π
38 36 4 37 mp3an23 K K + 1 π = K π + 1 π
39 35 38 eqtrd K K + 1 2 2 π = K π + 1 π
40 4 mulid2i 1 π = π
41 40 oveq2i K π + 1 π = K π + π
42 39 41 eqtr2di K K π + π = K + 1 2 2 π
43 mulass K + 1 2 2 π K + 1 2 2 π = K + 1 2 2 π
44 3 4 43 mp3an23 K + 1 2 K + 1 2 2 π = K + 1 2 2 π
45 25 44 syl K K + 1 2 2 π = K + 1 2 2 π
46 42 45 eqtr2d K K + 1 2 2 π = K π + π
47 46 oveq1d K K + 1 2 2 π π = K π + π - π
48 mulcl K π K π
49 4 48 mpan2 K K π
50 pncan K π π K π + π - π = K π
51 49 4 50 sylancl K K π + π - π = K π
52 47 51 eqtrd K K + 1 2 2 π π = K π
53 52 adantl A K K + 1 2 2 π π = K π
54 53 oveq2d A K A + K + 1 2 2 π - π = A + K π
55 31 54 eqtr2d A K A + K π = A - π + K + 1 2 2 π
56 1 55 sylan2 A K A + K π = A - π + K + 1 2 2 π
57 56 fveq2d A K sin A + K π = sin A - π + K + 1 2 2 π
58 57 adantr A K K + 1 2 sin A + K π = sin A - π + K + 1 2 2 π
59 subcl A π A π
60 4 59 mpan2 A A π
61 sinper A π K + 1 2 sin A - π + K + 1 2 2 π = sin A π
62 60 61 sylan A K + 1 2 sin A - π + K + 1 2 2 π = sin A π
63 62 adantlr A K K + 1 2 sin A - π + K + 1 2 2 π = sin A π
64 sinmpi A sin A π = sin A
65 64 ad2antrr A K K + 1 2 sin A π = sin A
66 63 65 eqtrd A K K + 1 2 sin A - π + K + 1 2 2 π = sin A
67 58 66 eqtrd A K K + 1 2 sin A + K π = sin A
68 67 fveq2d A K K + 1 2 sin A + K π = sin A
69 sincl A sin A
70 69 absnegd A sin A = sin A
71 70 ad2antrr A K K + 1 2 sin A = sin A
72 68 71 eqtrd A K K + 1 2 sin A + K π = sin A
73 zeo K K 2 K + 1 2
74 73 adantl A K K 2 K + 1 2
75 22 72 74 mpjaodan A K sin A + K π = sin A