Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
|
2 |
|
halfcl |
|
3 |
|
2cn |
|
4 |
|
picn |
|
5 |
|
mulass |
|
6 |
3 4 5
|
mp3an23 |
|
7 |
2 6
|
syl |
|
8 |
|
2ne0 |
|
9 |
|
divcan1 |
|
10 |
3 8 9
|
mp3an23 |
|
11 |
10
|
oveq1d |
|
12 |
7 11
|
eqtr3d |
|
13 |
1 12
|
syl |
|
14 |
13
|
adantl |
|
15 |
14
|
oveq2d |
|
16 |
15
|
fveq2d |
|
17 |
16
|
eqcomd |
|
18 |
17
|
adantr |
|
19 |
|
sinper |
|
20 |
19
|
adantlr |
|
21 |
18 20
|
eqtrd |
|
22 |
21
|
fveq2d |
|
23 |
|
peano2cn |
|
24 |
|
halfcl |
|
25 |
23 24
|
syl |
|
26 |
3 4
|
mulcli |
|
27 |
|
mulcl |
|
28 |
25 26 27
|
sylancl |
|
29 |
|
subadd23 |
|
30 |
4 29
|
mp3an2 |
|
31 |
28 30
|
sylan2 |
|
32 |
|
divcan1 |
|
33 |
3 8 32
|
mp3an23 |
|
34 |
23 33
|
syl |
|
35 |
34
|
oveq1d |
|
36 |
|
ax-1cn |
|
37 |
|
adddir |
|
38 |
36 4 37
|
mp3an23 |
|
39 |
35 38
|
eqtrd |
|
40 |
4
|
mulid2i |
|
41 |
40
|
oveq2i |
|
42 |
39 41
|
eqtr2di |
|
43 |
|
mulass |
|
44 |
3 4 43
|
mp3an23 |
|
45 |
25 44
|
syl |
|
46 |
42 45
|
eqtr2d |
|
47 |
46
|
oveq1d |
|
48 |
|
mulcl |
|
49 |
4 48
|
mpan2 |
|
50 |
|
pncan |
|
51 |
49 4 50
|
sylancl |
|
52 |
47 51
|
eqtrd |
|
53 |
52
|
adantl |
|
54 |
53
|
oveq2d |
|
55 |
31 54
|
eqtr2d |
|
56 |
1 55
|
sylan2 |
|
57 |
56
|
fveq2d |
|
58 |
57
|
adantr |
|
59 |
|
subcl |
|
60 |
4 59
|
mpan2 |
|
61 |
|
sinper |
|
62 |
60 61
|
sylan |
|
63 |
62
|
adantlr |
|
64 |
|
sinmpi |
|
65 |
64
|
ad2antrr |
|
66 |
63 65
|
eqtrd |
|
67 |
58 66
|
eqtrd |
|
68 |
67
|
fveq2d |
|
69 |
|
sincl |
|
70 |
69
|
absnegd |
|
71 |
70
|
ad2antrr |
|
72 |
68 71
|
eqtrd |
|
73 |
|
zeo |
|
74 |
73
|
adantl |
|
75 |
22 72 74
|
mpjaodan |
|