Metamath Proof Explorer


Theorem abssuble0

Description: Absolute value of a nonpositive difference. (Contributed by FL, 3-Jan-2008)

Ref Expression
Assertion abssuble0 A B A B A B = B A

Proof

Step Hyp Ref Expression
1 recn A A
2 recn B B
3 abssub A B A B = B A
4 1 2 3 syl2an A B A B = B A
5 4 3adant3 A B A B A B = B A
6 abssubge0 A B A B B A = B A
7 5 6 eqtrd A B A B A B = B A