Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Square root; absolute value
abssuble0
Next ⟩
absmax
Metamath Proof Explorer
Ascii
Unicode
Theorem
abssuble0
Description:
Absolute value of a nonpositive difference.
(Contributed by
FL
, 3-Jan-2008)
Ref
Expression
Assertion
abssuble0
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
A
≤
B
→
A
−
B
=
B
−
A
Proof
Step
Hyp
Ref
Expression
1
recn
⊢
A
∈
ℝ
→
A
∈
ℂ
2
recn
⊢
B
∈
ℝ
→
B
∈
ℂ
3
abssub
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
−
B
=
B
−
A
4
1
2
3
syl2an
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
−
B
=
B
−
A
5
4
3adant3
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
A
≤
B
→
A
−
B
=
B
−
A
6
abssubge0
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
A
≤
B
→
B
−
A
=
B
−
A
7
5
6
eqtrd
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
A
≤
B
→
A
−
B
=
B
−
A