Metamath Proof Explorer


Theorem abssubne0

Description: If the absolute value of a complex number is less than a real, its difference from the real is nonzero. (Contributed by NM, 2-Nov-2007) (Proof shortened by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion abssubne0 A B A < B B A 0

Proof

Step Hyp Ref Expression
1 simplr A B A < B B
2 1 recnd A B A < B B
3 simpll A B A < B A
4 abscl A A
5 3 4 syl A B A < B A
6 abscl B B
7 2 6 syl A B A < B B
8 simpr A B A < B A < B
9 leabs B B B
10 1 9 syl A B A < B B B
11 5 1 7 8 10 ltletrd A B A < B A < B
12 5 11 gtned A B A < B B A
13 fveq2 B = A B = A
14 13 necon3i B A B A
15 12 14 syl A B A < B B A
16 2 3 15 subne0d A B A < B B A 0
17 16 3impa A B A < B B A 0