Metamath Proof Explorer


Theorem abssubrp

Description: The distance of two distinct complex number is a strictly positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion abssubrp A B A B A B +

Proof

Step Hyp Ref Expression
1 subcl A B A B
2 1 3adant3 A B A B A B
3 simp1 A B A B A
4 simp2 A B A B B
5 simp3 A B A B A B
6 3 4 5 subne0d A B A B A B 0
7 2 6 absrpcld A B A B A B +